Topological hyperbolicity and the Coleman Conjecture for diffeomorphisms
نویسندگان
چکیده
منابع مشابه
C-Generic Symplectic Diffeomorphisms: Partial Hyperbolicity and Lyapunov Exponents
It is proven that for a C-generic symplectic diffeomorphism f of any closed manifold, the Oseledets splitting along almost every orbit is either trivial or partially hyperbolic. In addition, if f is not Anosov then all the exponents in the center bundle vanish. This establishes in full a result announced by Mañé in the ICM 1983. The main technical novelty is a probabilistic method for the const...
متن کاملSymplectic Diffeomorphisms: Partial Hyperbolicity and Zero Center Lyapunov Exponents
It is proven that for a C-generic symplectic diffeomorphism f of any closed manifold, the Oseledets splitting along almost every orbit is either trivial or partially hyperbolic. In addition, if f is not Anosov then all the exponents in the center bundle vanish. This establishes in full a result announced by Mañé in the ICM 1983. The main technical novelty is a probabilistic method for the const...
متن کاملthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولThe Entropy Conjecture for Diffeomorphisms Away from Tangencies
We prove that every C1 diffeomorphism away from homoclinic tangencies is entropy expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homology. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical entropy vary continuously wit...
متن کاملTopological Conjugacy of Circle Diffeomorphisms
The classical criterion for a circle diffeomorphism to be topologically conjugate to an irrational rigid rotation was given by A. Denjoy [1]. In [5] one of us gave a new criterion. There is an example satisfying Denjoy's bounded variation condition rather than [5]'s Zygmund condition and vice versa. This paper will give the third criterion which is implied by either of the above criteria.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1987
ISSN: 0022-0396
DOI: 10.1016/0022-0396(87)90114-8